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I Classification cont.

- many approaches for

decision rules and learning

—linear classification

— artificial neural networks/
deep learning

— prototype-based methods

— case based reasoning

—decision trees

— support vector machines

— boosting (meta algorithm)
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I Linear Classification cont.

e many possible solutions, which one

IS the best?

—g and h, both don’t make classification
errors

— g has shorter distance to patterns than h

—risk of misclassification for new pattern is
larger for g than for h

— (unknown) support of the class probability
distributions is similar to convex hull of

training examples

Maximising the distance of the separating hyperplane to the convex

hull of the training patterns means minimising the risk of
misclassification (result from computational learning theory)
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I SVM cont.

« a simple example:
— patterns are 1D:
positive: 5, 10
negative: -1, 2
— parameters: wi,b

— optimization problem:
1 5

MINIMISe —w7j
w1,b

subject to b > 1 — Bwy
b>1— 10w;
b< -1+ w;
b< —1-—2w;
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I SVM cont.

 optimal separating A
hyperplane determined by
support vectors
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 optimal separating A
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support vectors
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 optimal separating A
hyperplane determined by
support vectors

¢ removing non-support
vectors does not change
solution

 adding patterns with
distance of more than the -
margin does not change
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 optimal separating A .
hyperplane determined by
support vectors

¢ removing non-support
vectors does not change
solution

 adding patterns with
distance of more than the
margin does not change
solution

¢ removing support vector
changes solution /]
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I SVM cont.

 optimal separating A
hyperplane determined by
support vectors

¢ removing non-support ®
vectors does not change
solution

 adding patterns with
distance of more than the
margin does not change
solution -

e removing support vector -
changes solution

« adding pattern with
distance less than margin
changes solution
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I Searching for Objects cont.

« Improved idea:
use two classifiers

— classifier 1
- efficient
« inaccurate
« high recall
« low precision
- applied to all areas
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I Searching for Objects cont.

« Improved idea:
use two classifiers

— classifier 1
- efficient
 inaccurate
« high recall
« low precision
- applied to all areas

— classifier 2
- inefficient
« accurate
« high recall
« high precision
 applied to areas which are found by classifier 1

- idea can be extended to a series of many classifiers
— approach of Viola/Jones
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