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Classification cont.

• many approaches for
decision rules and learning
– linear classification
– artificial neural networks/

deep learning
– prototype-based methods
– case based reasoning
– decision trees
– support vector machines
– boosting (meta algorithm)
– …

• in this lecture:
linear classification, support vector machines, boosting, decision trees, 
deep learning
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Linear Classification cont.

• many possible solutions, which one 
is the best?
– g and h, both don’t make classification 
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Linear Classification cont.

• many possible solutions, which one 
is the best?
– g and h, both don’t make classification 

errors
– g has shorter distance to patterns than h
– risk of misclassification for new pattern is 

larger for g than  for h
– (unknown) support of the class probability 

distributions is similar to convex hull of 
training examples

g

h

Maximising the distance of the separating hyperplane to the convex 
hull of the training patterns means minimising the risk of 
misclassification (result from computational learning theory)
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SVM cont.

• a simple example:
– patterns are 1D:

positive: 5, 10
negative: -1, 2

– parameters:

– optimization problem:
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SVM cont.

• optimal separating 
hyperplane determined by 
support vectors

• removing non-support 
vectors does not change 
solution

• adding patterns with 
distance of more than the 
margin does not change 
solution

• removing support vector 
changes solution

• adding pattern with 
distance less than margin 
changes solution



Lecture in Machine Vision - 27

Slide 89



Lecture in Machine Vision - 28

Searching for Objects cont.

• improved idea:
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• efficient
• inaccurate
• high recall
• low precision
• applied to all areas
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Searching for Objects cont.

• improved idea:
use two classifiers
– classifier 1

• efficient
• inaccurate
• high recall
• low precision
• applied to all areas

– classifier 2
• inefficient
• accurate
• high recall
• high precision
• applied to areas which are found by classifier 1

• idea can be extended to a series of many classifiers
→ approach of Viola/Jones


